Optimizing FOLFOX
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Abstract—Adjusting timing and dosage of drugs involved
in FOLFOX-6 chemotherapy treatment is crucial in order to
maximize the degree to which the tumor will shrink while
minimizing long-term damage to the patient’s body.

I. INTRODUCTION

FOLFOX-6 is a chemotherapy treatment used primarily
to treat colorectal cancer. The treatment regimen is adjusted
based on the patient’s body surface area, the patient’s overall
health, the type of cancer, and the severity of the cancer, and
may further be adjusted based on the patient’s response to the
current treatment. The standardized treatment plan follows a
2-week cycle: Starting from day 1, the patient is concurrently
infused with 85 mg/m2 of Oxaliplatin and 400 mg/m2 of
Leucovorin via IV over 2 hours, as well as a bolus of 400
mg/m2 of 5-fluorouracil (5-FU), followed by an infusion of
1200 mg/m2 of 5-FU which lasts for 2 days. The next 12
days give the patient time to recover for the next cycle of
treatment, with 12 cycles as the upper limit.

Although there is time to recover in between drug infusions,
the toxicity of Oxaliplatin gradually builds up over continuous
exposure. With enough exposure, patients can show signs of
peripheral neuropathy, which is damage to nerves outside of
the spine and brain. Even further prolonged exposure can cause
permanent and significant neuropathy, which will harm the
patient’s quality-of-life long after the treatment is finished.
Another potential concern is neutropenia, or an abnormally
low number of white blood cells called neutrophils. This can
result from the drugs 5-FU and Oxaliplatin suppressing bone
marrow function. While this condition is usually short-term,
since bone marrow and neutrophils regenerate much more
rapidly than nerves, significantly prolonged treatment or large
enough doses can cause chronic neutropenia.

Thus an important factor of FOLFOX-6 chemotherapy is to
find an optimal dosage and timing for infusing these drugs,
which maximizes the amount of tumor reduction while mini-
mizing the amount of long-term damage caused to the patient
through neuropathy and neutropenia, expressed as quality-of-
life.

II. LITERARY SURVEY

FOLFOX is a combination chemotherapy regimen com-
posed of S-fluorouracil (5-FU), leucovorin, and oxaliplatin.
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It is widely employed in the treatment of colorectal cancer,
particularly in both adjuvant and metastatic settings. While this
regimen has been associated with improved patient outcomes,
it is not without significant toxicity concerns. Notably, grade
2 or higher neurosensory symptoms have been observed in
nearly one-third of patients receiving FOLFOX, with a portion
of these effects persisting beyond one year after treatment
cessation [T. André et al]. The efficacy of FOLFOX was
firmly established in the MOSAIC trial, which demonstrated
that adding oxaliplatin to the standard 5-FU and leucov-
orin regimen significantly improved disease-free survival in
patients with stage II and III colon cancer [T. André et
al]. This pivotal finding helped solidify oxaliplatin’s role in
the standard of care. However, oxaliplatin is also known
for its dose-dependent and cumulative neurotoxicity, which
remains a limiting factor in prolonged treatment. As exposure
accumulates, so does the likelihood of irreversible peripheral
sensory neuropathy, often necessitating dose reduction or early
discontinuation [M. W. Saif and J. Reardon].

Management strategies for oxaliplatin-induced neurotox-
icity—such as dose reduction, cycle delay, or ‘“stop-and-
go” regimens—are largely empirical and reactive in nature.
In contrast, 5-FU dosing has undergone a more analytical
evolution. Traditional regimens relied on body surface area
(BSA) as the basis for dosing, but pharmacokinetic studies
have revealed up to a 10-fold interpatient variation in 5-FU
clearance under BSA-based protocols, rendering such methods
both imprecise and potentially hazardous [M. Fallahi-Sichani
et al.]. In response, therapeutic drug monitoring (TDM) ap-
proaches—particularly those targeting plasma concentration
integrals over time (i.e., area under the curve, or AUC)—have
demonstrated improved consistency in drug exposure, leading
to reductions in toxicity and improvements in therapeutic
efficacy [M. Fallahi-Sichani et al.].

Despite these advances, most modeling efforts to date have
addressed either 5-FU dose titration or oxaliplatin-induced
toxicity in isolation. There remains a critical gap in com-
prehensive, integrative models that simulate the systemic and
multi-dimensional nature of chemotherapy regimens. These
dimensions include hematologic suppression, cumulative neu-
ropathy, tumor progression, and economic or utility-based
trade-offs. Some recent computational approaches, including



multi-objective optimization frameworks like the Two-Archive
Multi-Objective Squirrel Search Algorithm (TA-MOSSA), at-
tempt to mathematically optimize treatment schedules. How-
ever, these models often lack clinical interpretability and do
not incorporate patient-specific toxicity feedback or dynamic
disease state modeling [C. Jiang et al.], [M. A. Alafif et al.].
To address this unmet need, our work introduces a simplified
but clinically informed simulation framework for FOLFOX op-
timization. It incorporates pharmacodynamic models of ANC
(absolute neutrophil count) suppression, empirically grounded
neurotoxicity thresholds for oxaliplatin, and tumor growth
kinetics derived from longitudinal volumetric CT studies [J.
R. Burke et al.]. In addition, the framework integrates cycle-
level cost and utility scores, allowing the model to serve
as a foundation for evaluating trade-offs between treatment
efficacy, toxicity burden, and healthcare resource consumption.
This simulation provides a platform for future extensions
involving adaptive control strategies or reinforcement learning
agents capable of optimizing treatment policies in real-time.

III. METHODOLOGY
A. Tumor Growth Models Evaluated

Modeling the tumor growth over time is very challenging as
there are many different factors involved. We noticed one of
the main factors was the stage of the cancer which for stage 2
colonorectal cancer had an average doubling time of 211 days.
Although the standard deviation was very large. We compared
three candidate models for growth—Exponential, Gompertz,
and Simeoni—and ultimately selected the Gompertz model
as by tweaking its variables we were able to reach the 211
day doubling time. Also the Gompertz model could realisticly
predict how the growth rate would decrease as the tumor got
larger due to lack of nutrients from blood.

1) Gompertz Model: Formulation: This model accounts
for a carrying capacity K, slowing tumor growth as it enlarges.

dP K

o Captures saturation effects and biphasic growth (expo-
nential early, decelerated later).

o Calibratable: « can be solved from a known doubling
time.

B. Chemotherapy-Induced Tumor Kill Dynamics

In the selected Gompertz framework, the instantaneous rate
of change of tumor volume V'(¢) under drug exposure is given
by:

dVv K
o= aV lnv — (kox Cox(t) + kra Cra(t)) V. (2)
Gompertz growth Chemotherapy kill
where:

o V(t) is tumor volume at time t.
e « is the Gompertz growth constant.
e K is the carrying capacity (maximum tumor volume).

o Cox(t) and Cf,(t) are the plasma concentrations of oxali-
platin and 5-fluorouracil, respectively, obtained from the
optimization model.

o kox and kg, are the drug-specific killing rate coefficients.

We represent the tumor as two interacting pools: prolif-
erating cells and damaged cells. Proliferating cells follow
Gompertz growth, with their instantaneous kill rate computed
from the current concentrations of oxaliplatin and 5-FU. At
each time step, the code subtracts killed cells from this pool
and passes them into the first “damage” compartment, rather
than removing them entirely.

To mimic the biological delay between cell damage and
observable shrinkage, killed cells progress through a series of
transit compartments in sequence. Each compartment empties
into the next at a fixed rate, creating a built-in lag before dead
cells are cleared from the total volume.

C. Toxicity Model

To account for chemotherapy-induced side effects, we im-
plemented a multi-component toxicity model. This model
simulates the biological response of the hematologic, neuro-
logic, gastrointestinal, and systemic systems based on drug
concentrations and cumulative exposures.

1) Hematologic Toxicity: Neutropenia Modeling: The dy-
namics of the Absolute Neutrophil Count (ANC) are governed
by a Friberg-Karlsson-type turnover model:

d AN
dt ¢ = kturn(ANCbase_ANC)_(aoxcox(t)+af110fu(t))'ANC
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where:

o ANC(?): circulating neutrophil count.

o ANCy e baseline neutrophil count.

e kiurn: neutrophil turnover rate (homeostatic restoration).
Cox(t), Cry(t): plasma drug concentrations.

o Qux, Oy toxicity coefficients for oxaliplatin and 5-FU.

To maintain biological plausibility, a lower bound is en-
forced:
ANC(t) > 1 x 10? cells/L.

2) Neuropathy Severity: Neuropathy is modeled as a
quadratic function of cumulative oxaliplatin exposure:
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neuropathy_severity = min (1.0, <cumox> ) “)

where cum,, is the cumulative oxaliplatin dose and 6,0 1S
the neuropathy threshold.

3) Gastrointestinal (GI) Toxicity: GI toxicity is modeled
as a combination of instantaneous and cumulative exposure to
5-FU:

GI_severity = min (1.0, YimmCru(t) + Yeum - cumg,)  (5)

where Vimm and Yeum are weighting factors for immediate and
cumulative effects respectively.



4) Other Toxicity Metrics:
« Fatigue: Modeled as a function of total systemic drug
exposure over time.
o Hypersensitivity: Severity increases with cumulative ox-
aliplatin exposure, with stepwise thresholds.
5) Composite Toxicity Score: A weighted maximum-based
composite toxicity score is computed:

toXicCity_Score = Wyeuro - Mmax(neuropathy) + wg; - max(GI)
+ Wheme - Max(neutropenia)
+Wiatigue - Max(fatigue)

+ Whyper - max(hypersensitivity)

(6)
D. Optimization Algorithm

1) Initial Guesses: To improve the chances of finding a
global optimum and to explore other regions of the solution
space, the optimization process is initialized from multiple
seed schedules:

« Base Diverse Schedules: Eleven different regimens, in-

cluding:

— Standard FOLFOX (all drugs on day O at full dose).

— Intensified early treatment (higher initial doses).

— Dose-dense approaches (lower per-cycle dose with
varied intra-cycle timing).

— Delayed toxicity strategies (staggered spacing in later
cycles).

— Alternating high/low dose patterns.

— Minimal oxaliplatin strategies (prioritize 5-FU inten-
sity).

— Randomized dosing and timing patterns.

2) Optimization Methods: The objective function is mini-
mized using Sequential Least Squares Programming (SLSQP)
via scipy.optimize.minimize:

o Decision bounds: All timing and dose fractions con-

strained to [0,1].

E. User-Configurable Parameters

The following parameters can be set by the user via

config.yaml or command-line:

e cycles: Number of treatment cycles.

e tumor_threshold: Surgical volume threshold (cm?).
We considered the cancer ready for surgery if it is below
this threshold, meaning we have finished the simulation.

e Ox_max_cum: Maximum cumulative oxaliplatin dose
(mg/m?).

e anc_min: Minimum acceptable ANC (10° cells/L).

o Weighting factors: {wy, wa, Winy, - . . } for objective com-
ponents.

F. Optimization Problem Formulation

1) Decision Variables: For each cycle ¢ = 1,..
optimize:

., C we

xcc)i(day € [07 1]3 xg?(dose € [07 1]3

bolus bolus
c,del:; € [07 1], xc,dcl)lsbe [ 71 ’
inf inf

xc,day € [07 1]v xc,dose € [07 1

2) Objective Function: We minimize

J=w1 B+wy T+ Py, (7
where
e« B = ﬁx% fOT"‘a" V(t)dt is the normalized tumor
burden.

o T is the composite toxicity score.
3) Tumor Burden Calculation:
1 Tmax
B=_—"—— / V(t)dt,
Tmax‘/b 0 ( )
with Vj the initial volume.
4) Toxicity Score:
T = Wpeuro Max(neuropathy) + w,; max(GI)
+ Wheme Max(neutropenia) + Wiatigue Max(fatigue)

®)

+ Whyper max(hypersensitivity)

5) Constraints:
a) Minimum ANC:

ANCpin > 0.2 x 10° cells/L,
b) Maximum Cumulative Oxaliplatin:
Doy < 1200 mg/m?,

IV. RESULTS

All simulations were carried out over a fixed course of 20
treatment cycles. In the subsections that follow, we present the
key outcome metrics—tumor volume, neutrophil dynamics,
dosing schedules, cumulative exposures, and toxicity severi-
ties—for both the optimized and standard FOLFOX regimens.
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Fig. 1. Tumor volume over time for a simulated stage II/IIl colorectal
cancer patient (70kg, 175cm). The optimized FOLFOX schedule (solid blue)
produces stepwise declines in tumor size—each “step” corresponds to a drug
administration followed by regrowth—reaching a final size of 0.04 cm?3 by
day 139, below the 0.20 cm? surgical threshold (green dashed). The standard
regimen (red dashed) also crosses the threshold but with a faster initial decline.

Figure 2 shows the simulated Absolute Neutrophil Count
(ANC) over the 10-cycle treatment course. Each trough cor-
responds to a cycle’s chemotherapy doses, with recovery be-
tween cycles. Although we initially enforced a hard constraint



ANC(t) > 1.0 x 10°/L, no feasible solution existed under
that restriction within 20 cycles. Therefore, we relaxed the
constraint to permit dips below the minimum ANC, enabling
the optimizer to converge on a clinically reasonable dosing
schedule. You can also see that the ANC goes back up to the
baseline once the chemo treatment is over.
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Fig. 2. Simulated ANC during 10 FOLFOX cycles for a 70kg, 175cm stage
II/IIT colorectal cancer patient. Although the dashed red line indicates the
minimum acceptable ANC of 1x 10%/L, we change this to 0.2 x 109/L for
the sake of feasebility. Oscillations reflect neutrophil depletion and recovery
with each cycle.

Figure 3 shows the per-cycle dosing of oxaliplatin and 5-
FU under the optimized schedule across 20 cycles. Oxaliplatin
doses (blue bars) vary modestly between 30 and 55mg/m?,
avoiding both extreme peaks and sustained low levels (this
will be explained in the next graph).
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Fig. 3. Optimized per-cycle doses for oxaliplatin and 5-FU (bolus and

continuous infusion). Oxaliplatin (blue) remains within 30-55mg/m?

By capping cumulative oxaliplatin just under the 800mg/m?
neuropathy limit, the optimizer balances effective tumor kill
against the risk of severe peripheral neuropathy like shown in
figure 4 where the blue line is right below the dashed blue
line. This dosing strategy explains why per-cycle oxaliplatin
remains relatively low compared to 5-FU.
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Fig. 4. Cumulative doses of oxaliplatin (blue) and 5-FU infusion (green/10)
versus toxicity thresholds (dashed lines).
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Fig. 5. Gastrointestinal and hematologic toxicity severity from 5-FU across
treatment time. Scaled for O to 1. As you can see the effect are at maximum
intensity during treatment and slowly decrease over the rest period.

V. LIMITATIONS

First, tumor-growth parameter uncertainty: literature reports
for stage II/III colorectal cancer doubling times varied widely,
making it hard to choose a single growth constant a. We
addressed this by trying to pick data more specific to our
problem, such as focusing on colorectal cancer only and
looking only at human trials.

Second, the multi-objective problem—balancing tumor kill
against foxicity penalties required careful tuning of weight
parameters. There were many trials where the optimizer would
just pick one drug and avoid the rest.

Third, it was very challenging to make the simulation
realistic to actual medical data. There are many factors which
can influence how a person reacts to chemo and it is simply
impossible to capture all of them.

VI. CONCLUSION

In this project, we developed a clinically motivated sim-
ulation framework to optimize the FOLFOX chemotherapy
regimen by adjusting dose timing and intensity. Through inte-
gration of pharmacokinetic modeling, tumor growth simulation
using the Gompertz framework, and multi-dimensional toxic-
ity metrics, we were able to demonstrate a way to personalize



treatment plans that trade off tumor reduction against long-
term side effects like neuropathy and neutropenia.
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