CPU vs GPU optimized CNN algorithms

1%t Javad Baghirov
UMD CMNS
UMD
College Park, US
jbaghiro@umd.edu

Abstract—This project implements and evaluates CNN in-
ference on the MNIST dataset using both CPU and GPU
platforms. On the GPU side, we develop two self-contained CUDA
programs—in NCHW (channels-first) and NHWC (channels-
last) layouts—that load pre-trained CNN weights, perform a
single convolution-ReL.U-pool layer followed by a fully-connected
classification layer, and report throughput (images/second) and
accuracy. For the CPU, we build an optimized PyTorch-based
inference pipeline: weights are loaded from binary files, a
TorchScript script enables JIT compilation, and inference is
parallelized across all available cores. Benchmarks on 10,000
MNIST test images show that GPU inference in NCHW layout
achieves up to an order-of-magnitude higher throughput than
the optimized CPU implementation. These results underscore
the importance of hardware-aware layout choices, thread-level
parallelism, and JIT optimizations for CNN inference.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have become the
standard for image classification tasks thanks to their high
accuracy. However, achieving low-latency, high-throughput
inference remains a challenge, especially when deploying on
resource-constrained devices or in cost-sensitive cloud envi-
ronments. While GPUs offer massive parallelism, CPUs may
be used in certain cases where the GPU costs outweigh their
benefits. Moreover, the choice of tensor layout—channels-first
(NCHW) versus channels-last NHWC)—can critically impact
memory-access patterns and thus performance on specifically
the GPU architecture.

This project addresses two core questions:

How does inference throughput and latency for a simple
CNN algorithm compare between CPU and GPU implemen-
tations?

What is the performance impact of NCHW versus NHWC
memory layouts on GPU inference?

Our objectives are to (a) implement end-to-end inference
pipelines on both platforms, (b) benchmark throughput, accu-
racy and memory under similar conditions, and (c) analyze
the role of memory layout and parallelization strategies. By
doing so, we aim to provide concrete guidelines for people
choosing between CPU and GPU deployments and selecting
appropriate data formats for CNN algorithms.

II. LITERATURE SURVEY

Prior work has demonstrated the critical role of low-level
optimization techniques and data layouts in CNN inference
performance. We summarize key findings in those fields be-
low:

A. Memory Layouts: NCHW vs. NHWC

The memory layout (ordering of dimensions in linear mem-
ory) significantly impacts performance by affecting data access
patterns and cache behavior [1]. Two common layouts are
NCHW (batch, channels, height, width) and NHWC (batch,
height, width, channels).

PyTorch and cuDNN use NCHW (channels-first), whereas
TensorFlow uses NHWC (channels-last) by default [2]. The
choice influences memory access patterns and cache behavior.
In NCHW format, all elements of each channel are stored
contiguously, whereas NHWC stores elements of all channels
for each spatial location contiguously.

For CPU platforms, research shows that a channels-last
layout (NHWC) yields much better performance than plain
NCHW for CNNs. However, specialized blocked formats like
nChwl6c which pads channels to 16 for SIMD operations
performs best. [3] [4]

B. CPU vs. GPU Performance for CNNs

GPUs are specialized for parallel numerical computing:
a single GPU often contains thousands of cores that can
execute many operations at the same time, whereas a typical
CPU might have 4-16 cores optimized for sequential task
performance. This architectural difference means GPUs can
achieve 10x to 1000x more operations per second than a
CPU. [5] [6]

Training Performance: GPUs substantially outperform
CPUs for training deep CNN models. Early work by Raina
et al. showed that training deep belief networks on a single
GPU ran up to 70x faster than on a multicore CPU server,
making large-scale unsupervised learning feasible in hours
rather than days . Another study by Bahrampour et al showed
that across LeNet, AlexNet, autoencoder, and LSTM bench-
marks, GPU-based training and inference ran approximately
11x, 25-30%, 7-8x, and 20x faster respectively than opti-
mized multi-threaded CPU versions. Moreover, Torch led CPU



performance in all cases, Theano often topped GPU speed
for smaller models, and Neon was most competitive on large
convolutional networks. [7] [8].

Framework optimizations: Deep learning frameworks use
optimized low-level libraries to maximize CPU performance.
PyTorch both integrates Intel’s oneDNN library for x86 CPUs.
These libraries use vectorized instructions, cache-blocking and
threading to accelerate key matrix operations. In this paper by
Li et al., the authors introduce the oneDNN Graph Compiler,
a hybrid tensor compiler that blends compiler-driven graph
optimizations with expert-tuned microkernel templates to gen-
erate high-performance code for DNN computation graphs.
Their experiments demonstrate 2—-6x speedups over state-of-
the-art compilers like TVM on key subgraphs (MLP and
multi-head attention) and up to a 20% end-to-end throughput
improvement on full BERT and DLRM inference. [9]

Inference Performance: For inference, the CPU vs. GPU de-
cision depends on the scenario. GPUs excel at high-throughput
inference and heavy models. CPUs can be competitive for low-
batch or real-time inference when using optimized libraries.

C. Just-In-Time (JIT) Compilation

JIT compilation refers to runtime or ahead-of-time code
generation that optimizes model execution. In CNNs, JIT
compilers like PyTorch’s TorchScript and TensorFlow trans-
form high-level model definitions into efficient low-level code,
performing graph-level optimizations.

Vasilache et al. created a polyhedral JIT compiler that
takes high-level tensor expressions and automatically generates
fused, size-specialized CUDA kernels. Their system achieves
up to 4x speedup over NVIDIA libraries (e.g. cuDNN) [10]

The primary benefits of JIT compilation are reducing mem-
ory /O, fewer kernel launches, better cache locality, and
targeting of specialized hardware units.

III. METHODOLOGY
A. Hardware and Software Environment

The project was done on an AWS EC2 instance
(g4dn.xlarge). We both ssh’d into it via the root user
and used the github repository as the middle man to transfer
code.

GPU: NVIDIA T4 (16 GiB GDDR®6)

CPU: 4 vCPUs, which corresponds to 2 physical CPU cores

Dataset: MNIST test set (10,000 x 28x28 grayscale
images).

The weights and parameters of the CNN were pretrained
using PyTorch. For each implementation, weights were ex-
ported in the memory layout matching the target system:
NCHW (channels-first) and NHWC (channels-last). The pre-
trained weights were then loaded into the respective CPU and
GPU inference pipelines to ensure consistent evaluation and
layout alignment. We made sure the networks were correctly
implemented by checking the accuracy which was always in
96% range.

Profiling and benchmarking were automated using a shell
script (detailed_profiling_fixed.sh) that:

e Runs both GPU (NCHW and NHWC) and CPU (Py-
Torch, optimized PyTorch) implementations.

o Collects throughput and timing for each implementation
using /usr/bin/time and Python time.time().

o Profiles GPU kernel activity and memory usage with
NVIDIA nvprof.

e Monitors memory usage for all implementations by
polling /proc/<pid>/status and saving results to CSV.

o Aggregates all results and logs in the profiling_results/
directory.

o Analyzes output and generates summary plots and tables
with a Python script (analyze_results.py).

IV. EXPERIMENTS
A. GPU Implementation

We develop
gpu_mnist_nchw.cu
follow the same flow:

CUDA Kernels:

e Convolution (3x3, padding=1): A single pass over each
output pixel, accumulating bias plus weighted sums from
the 3x3 window.

e ReLU: Element-wise activation.

e MaxPool (2x2, stride=2): Each thread computes one
pooled output by scanning a 2x2 window. Reduces each
28x28 feature map to 14x14

o Fully Connected layer

two
and

standalone programs,
gpu_mnist.cu. Both

Benchmarking:

e Run 10 forward passes end-to-end, measure average
elapsed GPU time, compute throughput = 10,000 images
/ avg sec.

B. CPU Implementation

We use PyTorch (with MKL and OpenMP) and TorchScript
JIT to accelerate the same TinyCNN:
JIT Compilation:

o Script the module with torch. jit.script, enabling
graph optimizations and fusion.

Parallel Data Loading & Inference:

e Use DatalLloader with pin_memory=True
num_workers=min (4, n_cpu) for prefetching.

e Set OMP_NUM_THREADS and MKI_NUM_THREADS to
total logical cores.

e Measure inference time and throughput across the
MNIST test set while recording accuracy.

and

V. RESULTS
A. Evaluation Metrics

Throughput: images processed per second.

Memory Usage: amount of MB used during inference.

Accuracy: classification accuracy on the 10,000-image test
set.



Memory Usage Comparison

1600 - mmm Peak Memory
B Average Memory
1400

1200 -

6
400
200

o & h |

cpu_opt

Memory (MB)
@ =}
3 =3
S e

ﬁ
3
S

apu gpu_nchw epu
Implementation

Fig. 1. Memory usage comparison across all four implementation approaches.
Both CUDA GPU implementations (NCHW and NHWC) demonstrate ex-
cellent memory efficiency with peak usage under 150 MB, while CPU
implementations require substantially more memory. The Optimized CPU
(JIT) implementation consumes approximately 1,600 MB at peak compared
to around 630 MB for the basic CPU (PyTorch) implementation.

B. Performance Analysis

Our experimental results reveal significant performance
differences across implementations while maintaining consis-
tent accuracy. The comprehensive analysis covers throughput,
accuracy, memory usage, and execution time patterns.

In particular, the NCHW (channels-first) layout enabled
better memory coalescing since all 32 threads in a GPU warp
operate on the same channel group, requiring a single mem-
ory transaction per channel group. By contrast, the NHWC
(channels-last) layout maps each thread to a distinct output
channel, resulting in multiple memory trips and less effi-
cient access. On the CPU side, the optimized implementation
spawns multiple background workers for parallel data loading
and employs TorchScript JIT compilation, which accelerates
inference at the cost of increased memory and CPU usage. The
baseline CPU implementation uses a single process with lower
memory overhead. The execution time breakdown reveals
higher total user time for the optimized CPU (due to summing
CPU time across all threads) but only a marginal increase in
wall clock time thanks to parallelism. Additionally, the NCHW
format incurs slightly higher memory usage due to channel
dimension padding (e.g., 32-byte alignment). This is because
the Channel layer is 2nd so every layer below the channel layer
gets padded ending up with slightly higher memory usage.

1) Throughput Performance: Our performance measure-
ments show dramatic throughput differences between imple-
mentations:

Implementation Throughput (img/s) | Accuracy (%)

CUDA GPU (NCHW) 521,462 96.3

CUDA GPU (NHWC) 253,271 96.1

CPU (PyTorch) 6,997 96.2

Optimized CPU (JIT) 10,000 96.3
TABLE T

THROUGHPUT AND ACCURACY SUMMARY FOR TINYCNN ON MNIST
ACROSS FOUR IMPLEMENTATION APPROACHES.

The CUDA GPU implementation with NCHW layout
achieved the highest throughput at approximately 521,462

Execution Time Breakdown

. User Time
mm System Time
s Wall Clock Time

Time (seconds)

cpu_opt

Implementation

Fig. 2. Execution time breakdown showing user time, system time, and
wall clock time across implementations. Both CPU implementations show
similar user time, but the Optimized CPU (JIT) version demonstrates higher
system time due to compilation overhead. CUDA GPU implementations offer
significantly lower overall execution times.

images per second, more than doubling the performance of the
NHWC layout implementation (253,271 img/s). This dramatic
difference demonstrates the significant impact of memory lay-
out optimization on our particular GPU architecture (NVIDIA
T4).

Both CPU implementations showed substantially lower
throughput. The optimized CPU model with multithreading
and JIT compilation processed approximately 10,000 images
per second compared to 6,997 images per second for the basic
PyTorch CPU implementation.

2) Accuracy Analysis: All implementations maintained
nearly identical accuracy (96.1 — 96.3 %), since the CNN was
pretrained and the same exported weights were loaded into
every variant. This confirms that our optimization strategies
preserved model integrity.

3) Memory Usage Patterns: As illustrated in Figure 1,
memory utilization varied significantly across implementa-
tions:

+« CUDA GPU Implementations: Both CUDA GPU ver-
sions (NCHW and NHWC) demonstrated excellent mem-
ory efficiency, with peak memory usage under 150 MB.
The NCHW layout variant showed only slightly higher
memory consumption than the NHWC implementation.

o CPU Implementations: CPU-based processing required
substantially more memory, with the Optimized CPU
(JIT) version consuming approximately 1,600 MB at peak
compared to around 630 MB for the basic CPU (PyTorch)
implementation. This 2.5x increase in memory footprint
represents a significant tradeoff for the 1.43x throughput
gain.

4) Execution Time Breakdown: Figure 2 provides a detailed
breakdown of execution time:

o CPU (User/System) Time: The JIT-optimized build in-
curred roughly twice the system time (2 s vs. 1 s), while
its user time remained on par with the standard PyTorch
implementation.



Cuda vs Pylorch
1,200,000

1,000,000

800,000

600,000

Thraughput

400,000

200,000

Cuda Pytorch
Tool Used

Memory Comparison
1,000

800

Memary (MB)
a2 o

Pylorch

Tool Used

Fig. 3. Framework comparison between custom CUDA implementation and
PyTorch. Top: PyTorch achieves substantially higher throughput. Bottom:
PyTorch requires significantly more memory to achieve its performance
advantage.

o Wall-Clock Time: As expected, wall clock time (which
is the actual elapsed time) increased slightly for the non-
optimized version.

5) Additional Framework Comparison: We conducted ad-

ditional experiments comparing the performance of different
framework approaches, with results visualized in Figure 3.

o Throughput: As shown in Figure 3 (top), a separate
PyTorch implementation achieved approximately twice
the throughput of our custom CUDA implementations
(1,100,000 vs. 550,000 img/s), highlighting the benefits
of PyTorch’s highly optimized backend operations when
utilizing its GPU capabilities.

e Memory Utilization: This performance advantage comes
at a cost—as illustrated in Figure 3 (bottom), the opti-
mized PyTorch implementation consumed approximately
950 MB compared to 600 MB for our custom CUDA
implementations, a 58% increase in memory usage.

VI. CONCLUSION
A. Memory Layout Selection

Our results clearly demonstrate that for our particular
CNN architecture on the NVIDIA T4 GPU, NCHW provides
substantially better performance. The CUDA GPU (NCHW)
implementation achieved over 2x higher throughput (521,462
vs. 253,271 img/s) compared to the CUDA GPU (NHWC)
implementation. This dramatic difference demonstrates the
significant impact of memory layout optimization on our
particular GPU architecture.

Both CPU implementations showed substantially lower
throughput. The optimized CPU model with multithreading
and JIT compilation processed approximately 10,000 images

per second compared to 6,997 images per second for the
basic PyTorch CPU implementation. The optimizations (JIT
compilation and multithreading) provided a small speedup,
demonstrating the benefit of eliminating Python interpreter
overhead.

B. CPU vs. GPU Deployment Tradeoffs

Both CUDA GPU implementations dramatically outper-
formed CPU-based inference in terms of raw throughput, with
even the NHWC implementation processing images at 36 x the
rate of the basic CPU (PyTorch) implementation.

C. Framework Selection Considerations

Additional experiments comparing our custom CUDA im-
plementations with framework-optimized approaches revealed
that despite offering greater control, our custom implementa-
tions achieved only half the throughput of highly optimized
framework-based approaches (Pytorch). This is shown in Fig-
ure 3.

REFERENCES

[1] X. Fu, X. Zhang, J. Ma, P. Zhao, S. Lu, and X. T. Liu, “High Perfor-
mance Im2win and Direct Convolutions Using Three Tensor Layouts
on SIMD Architectures,” IEEE High Performance Extreme Computing
Conference (HPEC), 2024.

[2] Intel Corporation, “oneDNN Documentation: Memory Format Propaga-
tion,” Intel GitHub, 2023.

[3] A. Heinecke, E. Georganas, K. Banerjee, D. Kalamkar, N. Sundaram,
A. Venkat, G. Henry, and H. Pabst,“Understanding the Performance
of Small Convolution Operations for CNN on Intel Architecture,’in
Proceedings of the ACM/IEEE Supercomputing Conference (SC’17),
Denver, CO, Nov. 2017.

[4] X. Fu, X. Zhang, J. Ma, P. Zhao, S. Lu, and X. T. Liu, “High Perfor-
mance Im2win and Direct Convolutions Using Three Tensor Layouts on
SIMD Architectures,’arXiv preprint arXiv:2408.00278, Aug. 2024.

[S] V. W. Lee er al.,“Debunking the 100X GPU vs. CPU myth: An
evaluation of throughput computing on CPU and GPU,”in Proceedings
of the 37th International Symposium on Computer Architecture (ISCA),
Saint-Malo, France, Jun. 2010.

[6] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips,“GPU Computing,”Proceedings of the IEEE, vol. 96, no. 5,
pp. 879-899, May 2008.

[7]1 R. Raina, A. Madhavan, and A. Y. Ng,“Large-scale Deep Unsupervised
Learning Using Graphics Processors,” in Proceedings of the 26th In-
ternational Conference on Machine Learning (ICML ’09), Montreal,
Canada, Jun. 2009.

[8] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Compar-
ative Study of Deep Learning Software Frameworks,’arXiv preprint
arXiv:1511.06435, Nov. 2015. :contentReference[oaicite:2]index=2

[9] J.Li, Z. Qin, Y. Mei, J. Cui, Y. Song, C. Chen, Y. Zhang, et al.,“oneDNN
Graph Compiler: A Hybrid Approach for High-Performance Deep
Learning Compilation,” arXiv preprint arXiv:2301.01333 [cs.LG], Jan.
2023.

[10] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito,
W. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor Com-
prehensions: Framework-Agnostic High-Performance Machine Learning
Abstractions,” arXiv preprint arXiv:1802.04730 [cs.LG], Feb. 2018.

PROJECT REPOSITORY

For all code, scripts, and reproducibility instructions, see
the project GitHub repository:
https://github.com/Javad228/MSML605Proj



